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LETTER TO THE EDITOR 

Diffusion on fractal lattices and the fractal Einstein relation 

James A Given and Benoit B Mandelbrot 
IBM Thomas J Watson Research Center, Yorktown Heights, NY 10598, USA 

Received 14 July 1983 

Abstract. Finitely ramified fractal lattices show anomalous diffusion with (r2)CC t 2 H .  There 
is a hierarchy of transit times which are shown by Monte Carlo simulation to satisfy 
( ~ , ) = a ”  for large n, where a = b ” H  and b is the base of the lattice. The lattice resistivity 
scales with size as p CC R” where R is characteristic of the lattice. Exact renormalisation 
group methods yield a and R analytically and verify the Einstein relation for fractals 
a = RN. 

The main reason for investigating transport properties on fractal lattices (Mandelbrot 
1982) is that solution of many important equations of physics on these lattices adds 
to our understanding of the geometric and topological properties that are relevant to 
modelling the corresponding physical processes. We develop and test an especially 
simple fractal form of the Einstein relation between the transient or diffusive and 
steady-state or conductive solutions of the potential equation on these lattices. This 
report extends and illustrates some ideas that have been developed in a study of 
conduction and diffusion in random networks such as percolation clusters (see the 
‘ant in the labyrinth problem’ in de Gennes (1976), Straley (1980), Mitesku et a1 
(1979), Roussenq (1980), Vicsek (1981); see also Gefen et a1 (1981), Ben-Avraham 
and Havlin (1982), Angles d’Auriac et a1 (1983), Alexander and Orbach (1982), 
Rammal and Toulouse (1983)). The same diffusion properties are verified here for 
a class of deterministic fractal lattices. 

Figure 1 depicts the generators of the fractal lattices we consider, and table 1 lists 
their geometric and physical properties, determined both analytically and by Monte 
Carlo simulation. All these lattices are constructed by hierarchical extrapolation, Each 
stage of construction takes N copies of the order-n lattice, reduces them in the ratio 
r = l /b,  where b is an integer called the base, and connects them following a ‘generating 
tie scheme’ (see figure 2). 

The profound qualitative differences between fractal lattices of finite and infinite 
ramification (Mandelbrot 1982, ch 16, and Gefen et a1 1980) also prove critical to 
diffusion, hence infinitely ramified fractals are not treated in this paper, 

In Monte Carlo simulations of random walks on fractal lattices, a starting point 
was selected at random, and each trial proceeded either until a prescribed number of 
steps was reached, or until the walk reached an absorbing boundary. The lattice size 
and the number of steps satisfy two goals. (1) The average walk diffuses long enough 
to be affected by the lattice structure (tremas or water sheds) over several levels of 
the fractal hierarchy. (2) A negligible fraction of the walks are absorbed by the 
boundary. By construction, any lattice vertex lies in  a nested sequence of successively 
higher-order copies of the lattice. The corner vertices of an order-n lattice lie a 
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A I :  b - 3  A 2 :  b = 5  

A A  
B 1 . b - 2  82: b - 3  

A3: b = l  

A 8 3 :  b.4 

D I : b = 3  D 2 : b : 3  D 3 : b - 5  O k b - 3  

Figure 1. Generators (atoms) of our lattices. 

Table 1. 

Base a R 

3 
5 
7 
9 

11 
13 
21 

11715 
7175187 
89792514901 
329.148 
522.878 
765.1965 
2270.200 

Plane-filling ‘Phi lattices’ (e .g .  figure 1(A)) 
1315 9 0.348 46 0.352 
287187 25 0.364 75 0.367 
1832514901 49 0.373 45 
4.0636 81 0.379 06 
4.3213 121 0.383 09 
4.5278 169 0.386 27 
5.1478 44 1 0.393 98 

Sierpin’ski gaskets (e .g .  figure 1(B)) 
2 5  513 3 0.430 7 0.431 
3 9017 1517 6 0.430 2 
4 1030141 103141 10 0.430 0265 
5 83151197 16631591 15 0.430 0306 

Plane-filling ‘X-lattices’ (figure l(C)) 
2 8  2 4 113 0.333 
2 4+2-!/2 1 + J2/2 4 0.3608 0.365 
2 7.2769 1.8192 4 0.3492 
3 22.457 2.495 9 0.3531 

‘X-lattice’; checkerboards; Peano curve egure  l (D))  
3 15 3 5 0.405 68 
3 15 3 5 0.405 68 
5 51.54 3.96 13 0.4082 0.407 
3 81 9 9 0.250 0.250 
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Figure 2. To construct our fractal lattices, copies of 
the initiator 'atom' are connected according to the 
generating tie scheme to yield the second-order 
lattice. 

Figure 3. Construction of the renormalisa~ion group 
for resistivity calculations; copies of the order-n 
universal graph are connected using thegenerating tie 
scheme. The (n + 1)-order universal graph is then 
required to have identical two-point resistances. 

distance ocb" from an arbitrary vertex and serve as gates which must be crossed in 
order to diffuse further. Define the order-n transit time r, to be the first passage time 
to the corners of the order-n lattice from a random starting point inside it. Monte 
Carlo simulations show that (7,) = K1a " + K z ,  where the 'transit time' a is a characteris- 
tic of the lattice. Renormalisation group arguments yield K 1  and KZ analytically and 
prove that differently defined transit times show the same scaling behaviour. The 
simplest ansatz consistent with the observed scaling for the T ,  is ( r z ( t ) )  = t Z H  with 

H = log bllog a and a = lim ( T n + d / ( T n ) .  (1) n +a 

If the Einstein relation holds for self-similar structures, then (Gefen et a1 1983) 

e = - 2 C  1/H = t / v  - P f v  ( 2 )  
relates the exponents describing the power-law dependence on scale length L of the 
conductivity -L-"" and the diffusion coefficient -L-'. Here (Gefen et a1 1983) 

(3) 
where we define R by assuming that for large n the two-point resistance of an order-n 
lattice of unit resistors is a R " .  Substituting (1) and (3) into (2) yields 

P / v  = 2 - D  = 2 -log N/log b;  t / v  =log Rllog b, 

a = RN, (4) 
which we call the fractal Einstein relation. 

Using exact renormalisation group methods, we obtain exact values for a and R, 
although for convenience we sometimes use instead an iterative form of our renormali- 
sation group which is easily adapted to computer solution and will also be presented. 
We model an order-n fractal lattice with a universal graph having a vertex for each 
gate of order n and identical physical properties. Linear equations are solved to yield 
recursively effective parameters for the equivalent universal graph. This procedure 
will be illustrated for figure l(C2). Due to its Z4 rotational symmetry, two effective 
parameters suffice to match either the resistivity or diffusion properties of the order-n 
lattice. The equivalent resistors connecting adjacent and diagonally opposite vertices 
will be denoted by R,  and Rd.  The order-(n + 1) lattice connects copies of this graph 
according to the generating tie scheme of the lattice. The Rb and RI of the resulting 
graph are then functions of Ra and Rd :  

The unique positive fixed point yields R t l R ,  = R & / R d  = R = (1 -t J 2 / 2 ) .  To calculate 
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a ,  the order-n lattice is modelled by a universal graph with bonds connecting each 
pair of gate vertices and effective transit 'step times' Ta(resp Td) to an adjacent (resp 
diagonally opposite) gate vertex. Copies of this graph are connected to model random 
walk on the order-(n + 1) lattice. Average transit times to the corners of this lattice 
are then used as step times in the next-order universal graph. The relative probabilities 
of adjacent and diagonal steps on these equivalent graphs must also be calculated 
because they vary with n. Denote by 4Pa the probability that the next order-n gate 
is reached via sideways transition, and by 2Pd = 1 -4Pa the probability that the next 
gate is reached via diagonal transition. Recursions for the corresponding order (n + 1) 
probabilities are obtained by using the Markov nature of these random walks to relate 
the conditional probabilities P;,, P&k for walks starting at any vertex in the graph to 
those for walks starting at its neighbours 

i i I I 

sums over i, j being respectively those over adjacent and diagonal neighbours of vertex 
k. For this example 

(7) Pg =Pi  (4P: - 1)(2Pd+ I)/A, P& =-2P2(2P: +Pd)(2Pd+ 1)/A, 

with 
h = P :  (16Pd - 56) +P: (8P: -28Pd + 16) - (2Pd- I)*. 

Eliminating P d  using the relation 4Pa 2Pd = 1 yields Ph = (2Pa + 1)/(4Pa + 6), with a 
single positive fixed point at Pa = (J2  - 1)/2 = 0.207 107. (In the above, a matrix 
whose elements depend on two variables was inverted using the IBM symbolic 
calculation program SCRATCHPAD.) The expressions (7) for PL, P& are generating 
functions for random walks from a gate vertex to an adjacent, resp diagonally opposite, 
order-(n + 1) gate vertex: the coefficient of the term P,"Pi yields the number of walks 
of this type consisting of m adjacent and n diagonal steps. Thus, defining Q = 
Tapa aJaPa+ TdPd a/aPd, we have T: = (1/Pb) QPL and TL = (l/P&)QP&. The ratio 
of these equations yields the positive fixed point Td/Ta = (8+ 10&)/17, hence the 
asymptotic scaling behaviour TL/Ta = T&/Td = 4 + 2J2. The fractal Einstein relation 
is exactly verified. 

In general, given limit values for Pa and Pd, the scaling parameter a for the diagonal 
and adjacent step times in the nth order universal graph is obtained non-iteratively 
by solving the Markov equations for (n  + 1)-order conditional transition times to a 
diagonally opposite gate vertex, similar to those for Pa and Pd: 

(The diagonal transition time from any vertex is a weighted average of those of its 
neighbours.) The solution for a is noniterative because the only independent transition 
time in the equations, T,,,, = 4PaTa + 2PdTd, enters linearly and the diagonal transition 
time, which is one component of their solution, is T&iag = i(1- 2Pa)Th,,,. 

Figure l(C3) is a lattice whose generator lacks Z k  symmetry (k is the number of 
corner vertices):. The recursion for the two independent resistor ratios (figure 4) is: 
+ If the renormalisation group is constructed by our scheme for a lattice having a general anisotropic 
three-corner atom and the tie generating scheme of figure 2 ( b ) ,  the only non-trivial fixed point corresponds 
to the Sierpiriski gasket. The same is true for arbitrary values of the base b. This explains why this family 
of fractals attains scaling behaviour immediately. See Rammal and Toulouse ( 1983). 
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where r l  = R H / R D  and r2 = R V / R D .  This renormalisation group, again, has only one 
non-zero stable fixed point in the physical regime: ( r l ,  r 2 )  = (0.575 458, 0.426 970).  
It yields R = 1.8192. 

Figure 4. Universal graph for the asymmetric lattice C3. 

The Markov equations for relative transition probabilities were iterated on the 
computer to yield PH = 0.17104, P v  = 0.230 53, Pd = 0.098 43,  where 2PH+2Pv+ 
2Pd = 1. The equations for a contain only one independent transition time 

T,, = 2 p ~  T H  2Pv Tv + 2Pd T d ,  

and are solved non-iteratively as before via the diagonal transition time and the 
relation TAv = (1 -2PH)(1 -2PV)TA/(1 +2Pd). In this case, a = TkJT,, = 7.2769. 

Note added in proof. Mandelbrot (Proc. Star Phys. 15 to appear in J.  Stat. Phys.) is relevant to the discussion 
in this paper, because it advances a formalism that applies both to diverse fractal diffusions in Euclidean 
spaces and to diffusions restricted to fractals. In this formalism, 1 / H  (as defined in this paper) is the 
diffusion’s ‘latent fractal dimension’ and DX H (a ratio of latent dimensions) is the ‘latent fractal co- 
dimension’ of the instant when the diffusion recurs to its points of departure. 

The examples in Table I all lie in the plane, d = 2. Comparing the diverse phi-lattices, the diverse 
Sierpinski gaskets, and the X-lattices of bases 3 and 5,  we see that in each series taken separately H is 
nearly, but not quite, independent of the base. 
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